Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins
Abstract
Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.
Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein▿
ABSTRACT
The severe acute respiratory syndrome coronavirus (SARS-CoV) 7a protein, which is not expressed by other known coronaviruses, can induce apoptosis in various cell lines. In this study, we show that the overexpression of Bcl-XL, a prosurvival member of the Bcl-2 family, blocks 7a-induced apoptosis, suggesting that the mechanism for apoptosis induction by 7a is at the level of or upstream from the Bcl-2 family. Coimmunoprecipitation experiments showed that 7a interacts with Bcl-XL and other prosurvival proteins (Bcl-2, Bcl-w, Mcl-1, and A1) but not with the proapoptotic proteins (Bax, Bak, Bad, and Bid). A good correlation between the abilities of 7a deletion mutants to induce apoptosis and to interact with Bcl-XL was observed, suggesting that 7a triggers apoptosis by interfering directly with the prosurvival function of Bcl-XL. Interestingly, amino acids 224 and 225 within the C-terminal transmembrane domain of Bcl-XL are essential for the interaction with the 7a protein, although the BH3 domain of Bcl-XL also contributes to this interaction. In addition, fractionation experiments showed that 7a colocalized with Bcl-XL at the endoplasmic reticulum as well as the mitochondria, suggesting that they may form complexes in different membranous compartments.
SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: An in-silico approach
Highlights
Protein-protein interaction (PPI) network of the SARS-CoV and Homo sapiens was obtained.
Based on Bioinformatic analysis, the TGF-beta signaling pathway with the largest numbers of involved genes may play key roles during SARS-CoV infection.
An integrated network of mRNA/lncRNA/miRNA was created.
In the network, SMAD2, SMAD3, SMAD4, SMAD7, and TGFBR1 with the highest number of interactions were identified as target hubs.
Abstract
Although 70 % of the genome is transcribed to RNA in humans, only ∼2% of these transcripts are translated into proteins. The rest of the transcripts are defined as noncoding RNAs, including Long noncoding RNAs (LncRNAs) and MicroRNAs (miRNAs) that mostly function post-transcriptionally to regulate the gene expression. The outbreak of a novel coronavirus (SARS-CoV) has caused a major public health concern across the globe. The SARS-CoV is the seventh coronavirus that is known to cause human disease. There are currently no promising antiviral drugs with proven efficacy nor are there vaccines for its prevention. As of August 10, 2020, SARS-CoV has been infected more than 13 million cases in more than 213 countries, with an estimated mortality rate of ∼3 %. Thus, it is of utmost important priority to develop novel therapies for COVID-19. It is not fully investigated whether noncoding RNAs regulate signaling pathways that SARS-CoV involved in. Hence, computational analysis of the noncoding RNA interactions and determining importance of key regulatory noncoding RNAs in antiviral defense mechanisms will likely be helpful in developing new drugs to attack SARS-CoV infection. To elucidate this, we utilized bioinformatic approaches to find the interaction network of SARS-CoV/human proteins, miRNAs, and lncRNAs. We found TGF-beta signaling pathway as one of the potential interactive pathways. Furthermore, potential miRNAs/lncRNAs networks that the virus might engage during infection in human host cells have been shown. Altogether, TGF-beta signaling pathway as well as hub miRNAs, and LncRNAs involve during SARS-CoV pathogenesis can be considered as potential therapeutic targets.
Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection
Andrea Cuconati1 and Eileen White1,2,3,4
Genes & Dev. 2002. 16: 2465-2478
Abstract
Cellular BCL-2-related proteins (cBCL-2s) function as regulators of programmed cell death (apoptosis), in part by modulating the release of proapoptotic signaling molecules from mitochondria. These factors act to promote activation of cysteine proteases of the caspase family and thereby propagate signaling of apoptotic cell death. DNA viruses are known to encode homologs of cellular antiapoptotic BCL-2 proteins (vBCL-2s), and the role of vBCL-2s in various aspects of viral infection and the mechanism by which they function have been gradually emerging. It is now apparent that inhibition of apoptosis by vBCL-2s in infected cells can prevent premature death of the host cell, which would impair virus production; can enable efficient emergence from latency; can facilitate persistent infection; and contributes to the avoidance of immune surveillance by the host. Thus, apoptosis is clearly a mechanism used by the host immune system and the infected host cell itself as part of the antiviral response. Deregulation of this delicate host–pathogen interaction can alter the course of virus replication, which may explain aspects of viral disease. Recent evidence suggests that vBCL-2s may target the core cellular proapoptotic machinery for inhibition, perhaps to secure a broad spectrum of apoptosis inhibition to the infected cell. Furthermore, because vBCL-2 family members and some of their cellular counterparts are oncogenic, deciphering their mode of action may be useful in understanding and thwarting human cancer. In this review we outline the role and the mechanism of action of vBCL-2 proteins in infected cells and how and why their function may be distinct from some of their cellular homologs.
Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication
PLoS One. 2012; 7(1): e30191.
Abstract
Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
David E. Gordon, Gwendolyn M. Jang, Nevan J. Krogan
Nature volume 583, pages459–468(2020)
Abstract
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Mcl-1 small-molecule inhibitors encapsulated into nanoparticles exhibit increased killing efficacy towards HCMV-infected monocytes
Antiviral Res. 2017 Feb;138:40-46
Abstract
Human cytomegalovirus (HCMV) spreads and establishes a persistent infection within a host by stimulating the survival of carrier myeloid cells via the upregulation of Mcl-1, an antiapoptotic member of the Bcl-2 family of proteins. However, the lack of potent Mcl-1-specific inhibitors and a targetable delivery system has limited the ability to exploit Mcl-1 as a therapeutic strategy to eliminate HCMV-infected monocytes. In this study, we found a lead compound from a novel class of Mcl-1 small-molecule inhibitors rapidly induced death of HCMV-infected monocytes. Moreover, encapsulation of Mcl-1 antagonists into myeloid cell-targeting nanoparticles was able to selectively increase the delivery of inhibitors into HCMV-activated monocytes, thereby amplifying their potency. Our study demonstrates the potential use of nanotechnology to target Mcl-1 small-molecule inhibitors to HCMV-infected monocytes.